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Abstract. A correlation dimension analysis of the AE 
index indicates that the magnetosphere behaves as a low- 
dimensional chaotic system with a dimension close to 4. Sim- 
ilar techniques are used to determine if the system's behavior 
is due to an intrinsic sensitivity to initial conditions and thus 
is truly chaotic. The quantity used to measure the sensitivity 
to initial conditions is the Lyapunov exponent. Its calcula- 
tion for AL shows that it is nonzero (0.11_+0.05 min --1). This 
gives the exponential rate at which initially similar configura- 
tions of the magnetosphere evolve into completely different 
states. Also predictions of deterministic nonlinear models 
are expected to deviate from the observed behavior at the 
same rate. 

Introduction 

Recent studies [Vassiliadis et al., 1990] of the correlation 
dimension of the magnetosphere based on the analysis of 
auroral geomagnetic indices have suggested that it behaves 
as a self-organized system that may be described by a small 
number of degrees of freedom. Given these findings about 
global magnetospheric activity two questions arise: first, how 
strong is the evidence for the small number of variables (or 
dimensions of the system's state space). Second, given a low 
number of degrees of freedom, why and when is the behavior 
of the magnetospheric system irregular, rather than periodic 
or quasiperiodic? 

The low correlation dimension based on analysis of AE 
and AL data has been recenfiy confirmed by [Roberts, 1991; 
Shan et al., 1991]. The geomagnetic indices AL, AU, and 
AE quantify the response of the magnetosphere to solar wind 
variations as observed in the auroral zone. The currents 

along field lines that connect the magnetotail to the auroral 
zone are closed by the ionospheric electrojets. Fluctuations 
in the westward (eastward) electrojet yield AL (AU), while 
AE is a measure of both electrojets. The "dimension" of 
magnetospheric activity is a lower estimate for the system's 
number of degrees of freedom. More practically the same 
number of variables and equations would be sufficient to 
develop a deterministic model of the system. Furthermore, 
if the number is not an integer it suggests that the evolution 
of the system in its state space (the space of the variables) 
is tracing out a fractal pattern of that noninteger dimension. 
Analysis of AE time series has shown [Vassiliadis et al., 
1990] that the correlation dimension of the magnetosphere is 
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fractional (~3.6). The results complement a recent approach 
for describing the magnetospheric processes in the auroral 
zone based on simple models of the magnetospheric cavity 
[Baker et al., 1990; Klimas et al., 1991]. In such models 
the multitude of driven and intrinsic processes are assumed 
to be governed by a few dominant degrees of freedom thus 
allowing for the system approach. While the magnetosphere 
is modeled by a deterministic dynamical system, its input 
(corresponding to the solar wind) could be of an irregular, 
turbulent character. 

This letter addresses the second question which is related 
to the nature of the magnetospheric irregularity. For exam- 
ple the solar wind's erratic variation will affect the activ- 
ity. Additional to external disturbances though, irregular and 
unpredictable behavior can be due to intrinsic deterministic 
dynamics. Even systems with a few degrees of freedom (low- 
dimensional) may exhibit such behavior, apart from the more 
well-known periodic or quasiperiodic regimes. Because most 
of these deterministic chaotic systems create fractal shapes in 
their state space, a low, fractional dimension obtained from 
a space reconstructed from an irregular signal has often in- 
dicated that the underlying dynamics is chaotic. However, 
a fractional dimension does not necessarily imply a chaotic 
behavior; for instance, colored noise (random phased fluc- 
tuations of a power law spectrum) is shown to have low 
dimension [Osborne and Provenzale, 1989]. The identify- 
ing characteristic of a chaotic system, even one of a small 
number of equations, is related to its "unstable" behavior: a 
small difference in the initial conditions of two nearby states 
is exponentially amplified by the strong nonlinear coupling 
of the variables. For this mason predictions based on a small 
initial uncertainty (such as an observational error) fail after 
a finite time, since errors grow rapidly. Computations of the 
amplification time scale, namely of the Lyapunov exponent 
which distinguishes between chaotic and random systems, 
have been made for AL and are presented below. 

Lyapunov Exponents from Time Series 

Consider a deterministic dynamical system and the time 
evolution of its n variables given by x'= F(x), where x is 
an n-dimensional vector. In the case of the magnetosphere x 
would contain the global variables that are enough to describe 
a distinct state or configuran'on, such as the geomagnetic in- 
dices, the cross-tail electric field, the size of the magneto- 
sphere, etc. The variables define a state space where the 
system is represented at each instant by a point and traces 
out a trajectory, or orbit, during its time evolution. Then 
the concept of orbit stability can be introduced, quantified 
by Lyapunov exponents and related quantities. An orbit is 
called stable if small variations in initial conditions produce 
(generally differen0 orbits which remain in the neighborhood 
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of the original one and asymptotically approach it, while an 
unstable orbit is one from which initially nearby trajectories 
diverge. The divergence will be limited by the maximum 
length of the state space, but, as soon as the trajectories are 
close by again, they will "repel" each other. For a globally 
unstable system this property will characterize almost all of 
its orbits, any two of which will have a typical behavior as 
shown in Figure 1. The average rate of divergence can be 
estimated by the first Lyapunov exponent (LE) A1 [Wolf et 
al., 1985; Ruelie, 1989]: 

• (Ax(ti)) A• _= lim 1 ln(Ax(t) h = lim 1 ln•,Ax--•_i) (1) r ,/Xx(0)j r 
The above definition associates the LE with the direction of 

highest expansion; in fact there are n LEs altogether, as many 
as independent directions in the n-dimensional state space. 
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Fig. 1 (after Wolf et al., 1985). For deterministic chaotic 
systems, trajectories in state space are "unstable": they di- 
verge at an exponential rate given by the Lyapunov exponent. 
Following a state space trajectory (black circles) it is exam- 
ined how fast nearby (grey) points diverge by computing the 
increase of distance from the trajectory. When the distance 
becomes larger than Rmax the code looks for a nearer neigh- 
bor (white) to replace the former one before the next compu- 
tation. The angular change 0 during replacement should not 
exceed a parameter value, 0max- The' white and grey circles 
may come from the earlier or later trajectory passes through 
this region. 

A positive (negative) LE gives the rate of expansion (con- 
traction) in the associated direction. LEs are conventionally 
ranked in decreasing order, with the above equation giving 
the highest one. The RHS shows that, in effect, a time av- 
eraging is performed, the discrete character coming from the 
finite experimental or numerical time resolution. If all LEs 
are negative then all trajectories converge to a single point in 
state space. The presence of at least one positive LE is nec- 
essary and sufficient for a deterministic system to be chaotic. 
On the contrary, most irregular systems of many degrees of 
fre.edom (or even infinite, such as random processes) diffuse 
in state space with their average displacement scaling like a 
power rather than an exponential of time; for those systems 
the "LE" as defined in (1) would be zero since the denom- 
inator Would grow faster and dominate. Thus the existence 
of at least one positive LE is a distinguishing diagnostic for 

. 

the chaotic nature of a system. 
So far it has been tacitly assumed that all of the variables 

of the system are subject to measurement. In reality this is 

rarely the case. To address this issue, embedding theorems 
have been advanced by Takens [1981]. They state that 
the "missing" time series can be replaced by time series 
obtained from the observed ones in a well-defined way. 
Together with the original one the new time series define the 
evolution of the system in a "reconstructed" state space. The 
theorems state the conditions under which the reconstructed 

state space is equivalent to the original (unavailable) one. It 
has been shown [Packard et al., 1980] that the reconstruction 
is successful even from a single time series, and quantities 
like LEs can be accurately measured in that space. 

The LE can be measured using the algorithm of Wolf et al. 
[1985] for experimental systems whose evolution equations 
are not known [Mayer-Kress, 1986]. From the time series 
a trajectory in state space is constructed by the method of 
delays: if the state space is to have m embedding dimensions, 
m-1 additional time series are needed. The k-th time series 

is obtained from the original one by a time shift of (k-1)r, 
where r is th• delay. Its value is a free parameter, but it 
should be at least as large as the autocorrelation time. The 
m-dimensional trajectory will have the m time series as its 
components, so that a point at time t will be defined by x(t) 
= (x(t), x(t+r), x(t+2r) ..... x(t+(m-1)r) ). From thig it 
can be seen that given a time series whose length is N the 
number of points forming the trajectory is going to be N-(m- 
1)r. Given a point in that trajectory at time t the following 
one (at t+ 1) will be its image. The algorithm looks for the 
nearest neighbor of the point inside a sphere of radius Rmax 
(Figure 1). After their mutual distance Ax(t) is recorded the 
code looks for the images of the two points. The ratio of 
the new distance Ax(t+ 1) to the original contributes to the 
sum (1). The procedure is repeated starting from the point at 
t+ 1, until all the points of the trajectory are exhausted. The 
nearest neighbors should lie as much as possible along the 
same direction relative to the trajectory. The angle 0 between 
the directions O f the new nearest neighbor and the image of 
the previous' one should not exceed a maximum angle 0max. 
After the appropriate normalization the sum forms the LE. A 
convergent LE should be independent of the run parameters 
(length of the time series, embedding dimensions, delay tim e , 
etc) for a range of values. 

Application to Magnetospheric Activity Time Series 

The first (highes0 LE from AL time series was computed 
using the above algorithm. The use of that index rather than 
AE is based on physical as well as dynamical-systems cri- 
teria (e.g. independence of AL from the AU index which 
enters in calculating AE=AU-AL, smaller sensitivity to mag- 
netospheric currents otherwise unrelated to auroral phenom- 
ena; smoother scaling properties of AL with distance in state 
space [Roberts, 1991]). Initial comparison of several cases 
showed that AE yields a similar, yet slightly lower (less than 
3%) LE than AL. 

After test runs on dynamical systems whose LEs have been 
measured independently the algorithm was applied to. the 2.5- 
min-average AL time series used in [Clauer, 1986] With an 
autocorrelation time of approximately 3h (Figure 2a), Using 
a time series of length N=29 k (72.5 k min), an embedding 
dimension of m=10, and a delay time r=175 'min, the LE 
was computed and its evolution, as the state space trajectory 
is scanned, is shown in Figure 2b. Here "time" is measured 
as the number of trajectory points. The search for nearest 
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Fig. 2. a) The AL time series (2.5-min-averages). b) Time 
evolution of the sum in (1) from AL index. Here the length of 
the time series was N=29k, the embedding dimension m=10, 
and the time delay r=3h. 

neighbors is made inside a sphere of radius Rmax = 250 nT. 
The angular change 0 during replacements is less than 0max -- 
•r/5. This LE shows fluctuations of the order of 0.015 min --1 
around the value of 0.085 min '-1, and corresponds to a time 
scale of ~ 12 min. 

As the algorithm seeks to determine a dynamical quantity 
(the LE) from geometrical features of the state space, the 
radius Rmax of the sphere used in the search for a nearest 
neighbor plays an important role. In early runs this variable 
was set to 35 or 50 nT: when the activity was low (<500 
nT) this value was adequate since there were enough points 
(nearest neighbors) in the sphere. At higher activity levels the 
sphere was not large enough and contained few neighboring 
points; statistical fluctuations in the sum (1) were large and 
the LE was seen to vanish as 1/t. At the next low-activity 
interval the sum would grow again; in fact plotting it versus 
1/t one cotfid obtain its asymptotic value by extrapolation. As 
Rmax was increased the evolution of the LE became smoother 
and the intervals where it decreased disappeared. After 
discovering this, larger values of Rmax were used (>250 nT). 
The LEs thus obtained from the time series were between 
0.06 and 0.17 min --1 with fluctuations of _+0.02 min --1 or 
less. Generally the average value of the LE over a run was 
seen to decrease systematically with the radius. 

The embedding dimension m can be chosen from consid- 
erations of the number of degrees of freedom of the time 
series. An embedding dimension equal to 2v+l unfolds the 
Structure of embedded data of fractal dimension v [Takens, 
1981]. For AL v • 4 so m=9. On the other hand a sin- 
gular spectrum analysis of AE time series shows that they 
may be described with 5 independent variables [Sharma et 
al., 1991]. The LE estimate decreases with m and starts con- 
verging around m=9. After that it still drops, at a slower 
rate though, since the number of trajectory points decreases 
with embedding dimension. The LE changes less than 5% 
between m=9 and 10. 

The time delay was usually set equal to the first minimum 
of the autocorrelation function (3h). A plot of the LE versus 

time delay (Figure 3) shows that longer time delays do not 
seem to affect the LE significanfiy; for lower time delays, 
however, the LE decreases. These runs were shorter than in 
Figure 2 (N=10 k) and the LE values shown were taken at 
the end of each run. Initially the length N of the time series 
was 5-10 k points, but longer time series up to ~30 k points 
were also tested to ensure proper coverage of the state space 
in spite of the long delay and high m. It is our experience 
that time series shorter than 7k points fail to give a consistent 
estimate. Again, as in correlation dimension calculations it 
is important that the activity level is homogeneous. This can 
only be ensured with long enough (>10k) time series that 
cover the state space adequately. 
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Fig. 3. Variation of AL's Lyapunov exponent with time delay 
r. For time delays larger than the autocorrelation time (~3h) 
the exponent is almost constant. The value of convergence 
increases slightly with the length of the time series N. 

To see if the agreement was only for the cases of high 
activity of the solar wind (strong driving) a second data set 
compiled by Bargatze et al. [1985] was used. In this set 
intervals of AL 2.5-min-averages from the years 1973-74 
were arranged in order of increasing activity with quiet pe- 
riods of two hours separating them. The LE was measured 
for each one of the two halves of the 40-k-long database. It 
was found that the differences are small (<10%) and the LE 
appears independent of the activity level. 

The nonzero-LE result is in contrast to what would be ob- 

tained from a random process. In fact this is why the sum 
(1) tends to zero for too low Rmax: then a point's neigh- 
borhood becomes undersampled and nearby points appear 
to be "randomly" placed. To show that this would be the 
case with a random signal the following test was performed: 
the AL time series was Fourier-analyzed, its phases were 
randomized as would be the case with a random signal of 
the same spectrum, and then they were Fourier-composed. 
The random-phased time series had the same autocorrelation 
time, but its LE was at least three orders of magnitude lower 
than the original indicating the slower than exponential av- 
erage separation of nearby points. Increasing the number of 
points in this randomized time series rapidly decreased the 
estimate. The diagnostic reached its asymptotic value much 
faster, sometimes after the first few (50-100) points, in con- 
trast to Figure 2. 
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Summary and Discussion 

The results presented above quantify the irregular mag- 
netospheric behavior observed in auroral zone stations and 
the coupling of the global magnetosphere to the solar wind 
parameters. To examine if the AL time series reveals a 
"chaotic" aspect of the system dynamics (in the sense of an 
intrinsic strong sensitivity to small variations in initial condi- 
tions) and to estimate the associated time scale the Lyapunov 
exponent was computed. The method is based on reconstruc- 
tion of the state space from a single variable. 

The Lyapunov exponent of AL is in the range 0.06-0.17 
min --•. This is close to the independently computed value 
of Kolmogorov entropy, 0.2 min '-1 [Vassiliadis et al., 1990] 
which is defined as the sum of all positive Lyapunov expo- 
nents. However, the method for determining the entropy is 
more sensitive to fluctuations in the state space density. The 
LE value corresponds to a time scale (-10 min) that shows 
how fast two initially similar magnetospheric configurations 
will evolve into different ones. This is a rate of separation 
for an exponential divergence, as measured in the state space 
of AL, so the time interval needed for the configurations 
to be different is a few 1/LE (min). These considerations 
apply also for the comparison between predictions of a de- 
terministic model and the observed behavior. In this sense 

this constitutes a limitation for the predictive capabilities of 
any such model, because initial errors in the determination of 
magnetospheric activity will be exponentially amplified. This 
property of the system contributes greatly to its irregular be- 
havior and should be taken into account in magnetospheric 
modeling. 

Additional to this intrinsically unstable nature of the mag- 
netosphere the role of external and other factors has to be ex- 
mined. In particular, fluctuations in the solar wind and the 
magnetotail cause disturbances in the magnetosphere which 
are subsequently amplified. The relation of the level of such 
fluctuations to the dynamical properties of the system is cur- 
rently under study. Another important question has to do 
with the physical mechanism responsible for the exponen- 
tial divergence and several scenarios based on global models 
have been proposed [Goertz, 1990; Klimas et al., 1991]. The 
pictm'e that emerges for the magnetosphere is that of an in- 
trinsical!y unstable system with an irregular input from its 
environment. 
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